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Agenda
Review the distributed motion planner (DSRT)

Implementation

Challenges

Asynchronous message passing

Classes

Experimental results

Discussions
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Motion Planning 
Basics

Forbidden Space

Free Space

Configuration space (C-Space) -- The space of all 
the configurations of the robot.

Free C-Space -- The set of configurations at which 
the robot does not collide with any obstacles.

Motion Planning -- Given two configurations of a 
robot, find a free path in the free C-Space that 
connects them.
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Distributed SRT - Overview

A distributed algorithm using a master-client 
architecture

Clients {C1,...,Cc}: useful computations

Masters {M1,...,Mm}: schedule tasks
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Algorithm (1)

Milestone Computations

Candidate Edge Computations

Edge Computations
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Algorithm (2)

Milestone Computations

Candidate Edge Computations

Edge Computations
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Algorithm (3)

Milestone Computations

Candidate Edge Computations

Edge Computations - concurrency issues!
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Edge Computations

Master assigns an edge for an available client

Both milestones of the edge must be stored in 
the local memory of the chosen client

Two cases:

Both milestones are currently owned by the 
client (simple)

One or neither is owned by the client 
(complex) - need other clients’ help
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Challenges for 
Implementing DSRT
Complicated communications

Task assignment: master -> client

Ask for task: client -> master

Data sharing: client -> client

Shared memory or message passing?

Message passing: Synchronous or Asynchronous?

Channel: one-to-one, one-to-many or many-to-one?
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AsynchChannel

Message is queued if the receiver is busy

Sender does not block

Receiver blocks if there is no queued message

class AsyncChannel{
private int numMessages;
private Vector messages;
private int receiverId;

public synchronized void send(Object m){...}
public synchronized Object receive(){...}}
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AsynchChannel: send & receive
public synchronized void send(Object m){
! if (m==null) throw new NullPointerException();
! numMessages++;
! messages.addElement(m);
! if (numMessages <= 0) notify(); //unblock the receiver}

public synchronized Object receive(){
! Object receivedMessage = null;
! numMessages--;
! if (numMessages < 0)
! ! try {wait();} //block the receiver

catch (InterruptedException e) {} 
! receivedMessage = messages.firstElement();
! messages.removeElementAt(0);
! return receivedMessage;}
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Message types
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Message class Attributes Flow

Available Edge result;
int senderId Client -> Master

Edge int src;
int dst; Master -> Client

SendMilestoneTo int toWhom;
int milestoneId; Master -> Client

Milestone int id;
Object data; Client -> Client
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Assumptions

Channels shared by all the processors

Error-free communication channels, i.e., no 
lost messages

Messages can arrive in different order than 
they were sent

Processors do not fail or halt
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Master class
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class Master extends Thread{!
int id; AsyncChannel[] channels; Edge[] edges; int numEdges;
public void run(){

while (numEdges>0){
message=channels[id].receive();
if (((Available)message).result != null) {numEdge--; update 
edges;}
int cid=((Available)message).senderId;
...//select an edge e for cid 
channels[cid].send(e);
...//tell e.src and e.dst’s owner x (if not cid) to send data to 
cid
channels[x].send(new SendMilestoneTo(e.src, cid));
...

}}}
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Client class
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class Client extends Thread{!
int id; AsyncChannel[] channels;
HashMap myMilestones; Edge currentJob;
public void run(){

while (true){
message=channels[id].receive();
if (message instanceof Edge) {currentJob=(Edge)message;}
else if (message instanceof Milestone){

myMilestones.put(message.id,message)}
else if(message instanceof SendMilestoneTo){...//send milestone}
...//try connecting currentJob if both ends are in myMilestones

}
}

}
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Experimental results (1)
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Experimental results (2)
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Experimental results (3)
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Discussions
Centralized design

No “synchronized” method or object in the 
thread classes

 Possible optimizations:

Multiple masters

More than one job scheduled at a time

Cached memory (clients don’t delete their 
temporary milestones immediately)
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Questions?
Thank you!
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