
Implementing a Distributed 
Motion Planner

1

Presented by Jing Yang
Nov. 15, 2007

1



Agenda
Review the distributed motion planner (DSRT)

Implementation

Challenges

Asynchronous message passing

Classes

Experimental results

Discussions

2

2



Motion Planning 
Basics

Forbidden Space

Free Space

Configuration space (C-Space) -- The space of all 
the configurations of the robot.

Free C-Space -- The set of configurations at which 
the robot does not collide with any obstacles.

Motion Planning -- Given two configurations of a 
robot, find a free path in the free C-Space that 
connects them.

3

3



Distributed SRT - Overview

A distributed algorithm using a master-client 
architecture

Clients {C1,...,Cc}: useful computations

Masters {M1,...,Mm}: schedule tasks

4

4



Algorithm (1)

Milestone Computations

Candidate Edge Computations

Edge Computations

5

5



Algorithm (2)

Milestone Computations

Candidate Edge Computations

Edge Computations

6

6



Algorithm (3)

Milestone Computations

Candidate Edge Computations

Edge Computations - concurrency issues!

7

7



Edge Computations

Master assigns an edge for an available client

Both milestones of the edge must be stored in 
the local memory of the chosen client

Two cases:

Both milestones are currently owned by the 
client (simple)

One or neither is owned by the client 
(complex) - need other clients’ help

8

8



Challenges for 
Implementing DSRT
Complicated communications

Task assignment: master -> client

Ask for task: client -> master

Data sharing: client -> client

Shared memory or message passing?

Message passing: Synchronous or Asynchronous?

Channel: one-to-one, one-to-many or many-to-one?
9

Task

Ta
sk

Ac
k

Ack

D
a
ta

D
a
ta

Master

Client

Client

9



AsynchChannel

Message is queued if the receiver is busy

Sender does not block

Receiver blocks if there is no queued message

class AsyncChannel{
private int numMessages;
private Vector messages;
private int receiverId;

public synchronized void send(Object m){...}
public synchronized Object receive(){...}}

10



AsynchChannel: send & receive
public synchronized void send(Object m){
! if (m==null) throw new NullPointerException();
! numMessages++;
! messages.addElement(m);
! if (numMessages <= 0) notify(); //unblock the receiver}

public synchronized Object receive(){
! Object receivedMessage = null;
! numMessages--;
! if (numMessages < 0)
! ! try {wait();} //block the receiver

catch (InterruptedException e) {} 
! receivedMessage = messages.firstElement();
! messages.removeElementAt(0);
! return receivedMessage;}

11



Message types

12

Message class Attributes Flow

Available Edge result;
int senderId Client -> Master

Edge int src;
int dst; Master -> Client

SendMilestoneTo int toWhom;
int milestoneId; Master -> Client

Milestone int id;
Object data; Client -> Client

12



Assumptions

Channels shared by all the processors

Error-free communication channels, i.e., no 
lost messages

Messages can arrive in different order than 
they were sent

Processors do not fail or halt

13

13



Master class

14

class Master extends Thread{!
int id; AsyncChannel[] channels; Edge[] edges; int numEdges;
public void run(){

while (numEdges>0){
message=channels[id].receive();
if (((Available)message).result != null) {numEdge--; update 
edges;}
int cid=((Available)message).senderId;
...//select an edge e for cid 
channels[cid].send(e);
...//tell e.src and e.dst’s owner x (if not cid) to send data to 
cid
channels[x].send(new SendMilestoneTo(e.src, cid));
...

}}}

14



Client class

15

class Client extends Thread{!
int id; AsyncChannel[] channels;
HashMap myMilestones; Edge currentJob;
public void run(){

while (true){
message=channels[id].receive();
if (message instanceof Edge) {currentJob=(Edge)message;}
else if (message instanceof Milestone){

myMilestones.put(message.id,message)}
else if(message instanceof SendMilestoneTo){...//send milestone}
...//try connecting currentJob if both ends are in myMilestones

}
}

}

15



Experimental results (1)

16

200-50

0

500000000

1000000000

1500000000

2000000000

2500000000

1 2 3 4 5 6 7 8

200-50

16



Experimental results (2)

17

500-200

0

1000000000

2000000000

3000000000

4000000000

5000000000

6000000000

7000000000

8000000000

9000000000

10000000000

1 2 3 4 5 6 7 8

500-200

17



Experimental results (3)

18

10000-5000

0

5E+10

1E+11

2E+11

2E+11

3E+11

3E+11

1 2 3 4 5 6 7 8

10000-5000

18



Discussions
Centralized design

No “synchronized” method or object in the 
thread classes

 Possible optimizations:

Multiple masters

More than one job scheduled at a time

Cached memory (clients don’t delete their 
temporary milestones immediately)

19

19



Questions?
Thank you!

20

20


