

Verification of Moving K-
Nearest-Neighbor Query

Marcin Kwietniewski

Agenda

• Problem revision
• Implementation overview
• Goals
• JPF issues
• Model modifications
• Future work

Problem Revision

• A mobile network: server, base stations, mobiles
• We are interested

in k nearest
neighbours of
some mobile

• Mobiles are
constantly moving

The Algorithm

• First phase: we compute the initial result by
asking the mobiles about their positions

• Continuous processing: we keep track of
positions of the query owner and the critical
object

CO

CD

Implementation
overview

-id
-xCoordinate
-yCoordinate
-xVelocity
-yVelocity
+color

MKNNMobile

-mobiles
-mobilesStations
-KNN

MKNNServer
-id
-mobiles
-xCoordinate
-yCoordinate
-transmissionRange

MKNNBaseStation

0..* 1
1..* 1

+run()
+start()

Thread

+push()
+pop()
+pop(in timeout)

-messageList
MKNNQueue

1

1

1

1

1

1

Message passing

• Mobiles report their base station changes
• Initial stage:

– position request broadcast from the server
– mobiles report their positions

• Continuous phase:
– query owner's position and critical object's position

are broadcasted
– mobiles report changes in the query result

Goals

• What to verify?
– Simulation doesn't crash
– Query gives the right answer

• K doesn't change
• No more than one object should be in the result

and is not
• In what situations?

– At least 2 base stations
– At least 4 mobiles: owner, critical and 2

mobiles simultaneously changing the result

JPF issues -
randomization

• Positions of mobiles random – initially in semi-
continuous domain (double)

• JPF branches for every possible random value
• Floating point values can be handled using

DoubleThresholdGenerator heuristic
• Solution:

– Limited starting positions
– Limited possible velocity values

JPF issues

• Thread termination:
– Initially, the simulation didn't stop at all
– Process termination causes JPF to crash

(join() problem?)
– Solution:

• MKNNLauncher waits on a semaphore for all the
mobiles to finish.

• Mobiles have a limited number of „life cycles”

JPF issues

• sleep(milliseconds) method has no effect
• On the other hand, JVM is not a real-time system,

there are no guarantees on timing
• First bugs found:

– Query owner has to start the query after he logs
into the network

– Launcher has to log in all mobiles automatically

State space problems

• Initial tests with only 4 mobiles and 1 base station
• JPF runs out of memory (1GB) after ~100,000

states checked (quickly)
• Ensure that partial order reduction (POR) didn't

miss anything:

Server.run(): BaseStation.run():
messageQueue.pop() messageQueue.pop();
Verify.beginAtomic(); Verify.beginAtomic();
all the processing pass the message further
Verify.endAtomic(); Verify.endAtomic();

State space problems

• No big improvement observed
• # mobile positions allowed too big:

– in 3 steps with 1 velocity value allowed 49
positions van be reached

– Execution paths = 49#mobiles * #initial
configurations*message queue states

– We can't rely on state comparisons

Model change

• Only 4 mobile positions allowed:

• Mobiles jump counterclockwise/clockwise or don't
move (3 choices)

• Great reduction in state space
• Hopefully, all interesting events from the original

model will happen here

21

30

Results

• JPF wasn't able to check the whole state space
• ~50,000,000 states checked
• BFS loses most of its time on all possible initial

configurations, therefore DFS is more interesting
• I prefer to check a more complex model to some

extent, than a simple model completely

Race conditions

• No race conditions found!
• That might be due to properly synchronized

MKNNMessageQueue
• Obviously, message order depends strongly

on scheduling

Future work

• Focus on validating the query result
• I might work on the allowed delays in terms

of mobile steps
• Validate a two-state model?
• Validate a mobile permutation model?

The end

Questions?

